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This supplement contains computational details and a sensitivity
analysis corresponding to the hierarchical spline model presented in
“A Bayesian hierarchical model for inferring player strategy types in
a number guessing game”.

1. Computational details. Posterior sampling is performed via a
Metropolis-within-Gibbs approach. We sequentially sample parameters, given
the current value of all other parameters, according to the Metropolis-
Hastings acceptance probabilities. A challenge with this approach is to devise
suitable proposal densities. We utilize a random-walk approach. As many of
the model parameters are restricted to the unit interval, we introduce a
latent variable representation using the “wrapping function”:

g(x) = x− bxc+ 1(x < 0),

where bxc denotes the integer part of x. This function maps numbers in
the unit interval to themselves, while numbers outside the unit interval get
mapped back to their fractional part, in the case of positive numbers, or
one minus their fractional part, in the case of negative numbers. So 0.8 gets
mapped to itself; 1.3 gets mapped to 0.3; -2.4 gets mapped to 0.6. For a
parameter, such as µ0, restricted to the unit interval, we conduct a random
walk over parameters µ̃ on the whole real line and define µ ≡ g(µ̃). The µ̃
parameters are unidentified, but this is irrelevant as we report inferences and
define priors on the original, identified scale. (Note that ηi is restricted to
[0.3, 0.7] rather than [0, 1], so g(·) must be modified accordingly by a simple
rescaling.)

For the φi parameters, which can be exactly zero with positive probability,
we also introduce a binary latent variable zi and define φi = zig(φ̃i). We
conduct the random walk on the real line with φ̃ and transform to φi for
likelihood evaluations.

1. For each i, sample (ηi, φi, νi, µi | –) according to a Metropolis ratio
using likelihood and prior given in (2) and (3), (4) and (5) (of the
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main text) respectively. Proposal density evaluations can be avoided
by using a symmetric random walk over the elements of η̃i, φ̃i, ν̃i and
µ̃0i , centered at the current values.

2. For each i, sample (zi | –) using a straightforward application of Bayes
rule.

3. For each i, sample (si | –) using a straightforward application of Bayes
rule.

4. Sample (w | –) from a Dirichlet distribution with parameter α∗ =
α+κ, where κ records counts of how many observations are currently
assigned to each level of s.

5. Sample (ρ | –) as a Beta(γ, β) random variable. Let n1 =
∑

i zi and
n0 =

∑
i(1− zi). Then γ = 3 + n0 and β = 1 + n1.

6. Sample (q0 | –) as a Beta(γ, β) random variable. Let nq0 be the number
of players for whom both φi = 0 and νi < µ0i ηi. Then γ = 3 + nq0 and
β = 1 + n0 − nq0.

7. Sample (q1 | –) s a Beta(γ, β) random variable. Let nq1 be the number
of players for whom both φi 6= 0 and νi < µ0i ηi. Then γ = 3 + nq1 and
β = 1 + n0 − nq1.

2. Model diagnostics. This section presents various model diagnos-
tics: measures of Markov chain Monte Carlo convergence, a sensitivity anal-
ysis to determine if our conclusions are impacted by our specific choice of
games, p ∈ {0.3, 0.4, 0.5, 0.6, 0.7, 1}, and an assessment of our three-knot
spline model in terms of approximating true k-step strategies.

2.1. Convergence diagnostics. Figures 1 and 2 show trace plots for key
parameters from the MCMC sampler. By this rough metric, mixing looks ad-
equate. Subject-specific samples are shown, arbitrarily, for participant #100.
Although hard to discern in the plot for φ, 75% of the samples drawn are
φ = 0. Figure 3 shows a Geweke-Brooks diagnostic plot for ρ, q0 and q1; for
an explanation of this plot, see Plummer et al. [2006].

2.2. Design sensitivity analysis. Although our study represents an ad-
vance on the current literature in terms of collecting multiple responses
from the same subject across different values of p without feedback, it
is only natural to wonder if our particular experimental design of p ∈
{0.3, 0.4, 0.5, 0.6, 0.7, 1} strongly influenced our results. Here we address this
question in two parts. First, we conduct a sensitivity analysis, where we re-
run our analysis, but omitting the data from individual values of p, one by
one. Figure 4 shows how our posterior conclusions vary across these differ-
ent designs. Essentially the only relevant held-out design point was p = 0.3,
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Fig 1. Trace plots of model parameters ν, η, φ, and µ for subject #100 (for illustration
purposes).
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Fig 2. Trace plots for shared parameters ρ, q0 and q1.
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Fig 3. Geweke-Brooks diagnostic plot for ρ, q0 and q1; see Plummer et al. [2006] for a
detailed explanation of how to read this plot.
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which yielded higher posterior probability that any given subject playing a
strategy through the origin (φ = 0), leading to higher posterior estimates
of ρ. Interestingly, this increased estimate of ρ was counteracted by a de-
crease in the probability of playing a concave strategy, yielding an essentially
unchanged posterior over the probability of k-step compliance ρq0.

Even so, as p = 0.3 was an important design point, one might wonder
how our results would differ had we included p = 0 in our study. In fact, our
pilot data did include p = 0 as one of the design points. Based on this pilot
data, we found a surprisingly high proportion of subjects who did not play
0 at p = 0. In our follow-up data collection, we opted not to include p = 0
in an effort to give every benefit of the doubt to the k-step hypothesis. In
fact, when our model is applied to the pilot data, posteriors over the key
quantity ρq0 are notably lower, with posterior mean of 10% (compared to
the 25% reported above).

2.3. Three-knot spline approximation and residual analysis. In light of
the fact that k-step strategies are potentially high-order monotone polyno-
mials on [0, 1], it is natural to wonder how good or bad our three-knot spline
approximation is. To quantify the goodness of this approximation formally
is beyond the scope of this paper, but here we present numerical evidence
that the approximation is adequate. To visualize our approximation, Figure
5 shows 6 example draws of bona fide k-step strategies and the correspond-
ing best-fitting (in terms of squared error) three-knot spline approximation.
While there is obvious disagreement between the two curves, the magnitude
of the mis-fit is small relative to the curvature of the underlying strategy.
Specifically, we see that errors due to this approximation may exhibit neg-
ative auto-correlation, for example, as shown in the sixth panel of Figure 5,
on either side of p = 0.8.

Because our game response data is restricted to the unit interval (after
scaling by dividing by 100), a straightforward residual analysis looking at
the simple difference from of the observed data from the mean strategy curve
is inappropriate. Instead, we evaluate the appropriateness of our beta error
model by examining the normalized residual defined as

ri,j = Φ−1{Fi,j(yi,j)}

where Φ−1(·) is the inverse-CDF of a standard normal distribution and Fi,j(·)
is the cumulative distribution function of the beta distribution corresponding
to subject i ∈ {1, . . . , 106} at design point j ∈ {0.3, 0.4, 0.5, 0.6, 0.7, 1}. In
fact, we have M = 15, 000 posterior samples of each ri,j . For visualization,

we consider the posterior mean residuals r̄i,j = M−1
∑M

l=1 r
l
i,j , where rli,j

denotes the lth Monte Carlo sample.
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Fig 4. Posterior densities from analyses with a single design point p ∈
{0.3, 0.4, 0.5, 0.6, 0.7, 1} omitted at a time. The dashed line shows the prior density. Only
the p = 0.3 design point had a material impact, leading to a posterior for ρ that is shifted
to the right and a posterior for q0 that is shifted to the left. Interestingly, these changes
offset when considering ρq0, the probability of k-step compliance, which appears relatively
unchanged.



7

0.0 0.2 0.4 0.6 0.8 1.0

0.
0
0.
2
0.
4
0.
6
0.
8
1.
0

p

y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0
0.
2
0.
4
0.
6
0.
8
1.
0

p
y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0
0.
2
0.
4
0.
6
0.
8
1.
0

p

y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0
0.
2
0.
4
0.
6
0.
8
1.
0

p

y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0
0.
2
0.
4
0.
6
0.
8
1.
0

p

y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0
0.
2
0.
4
0.
6
0.
8
1.
0

p

y

Fig 5. The three-step spline approximation (dashed) versus true k-step compliant strategies
(solid). All approximations are k-step compatible and deviations are visually minor.
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To explore this approximation-induced autocorrelation, we examine the
correlation matrix of (r̄i,j , r̄i,j′) for all pairs (j, j′); see Table 2.3. To com-
pute this correlation, we consider only players with mean precision param-
eter s̄i > 5; this rules out those players (24 out of 106) whose game play
exhibits essentially no errors, most of whom played perfectly linear strate-
gies. After excluding these ultra-precise players, we indeed see evidence of
approximation-induced autocorrelations, consistent with the approximation
mis-fit shown in Figure 5, panels two, three and six especially.

p = 0.3 p = 0.4 p = 0.5 p = 0.6 p = 0.7 p = 1

p = 0.3 1.00
p = 0.4 -0.08 1.00
p = 0.5 -0.44 -0.03 1.00
p = 0.6 -0.11 -0.20 0.17 1.00
p = 0.7 -0.22 0.01 -0.19 0.21 1.00
p = 1 0.42 0.15 -0.12 -0.43 -0.76 1.00

Table 1
Correlations between posterior mean normalized residuals, computed across participants

at various values of the game parameter p. Statistically significant correlations are shown
in bold. This pattern of correlations suggests approximation-induced dependence between

errors, consistent with regions of spline mis-fit shown in Figure 5.

Future work may wish to refine our model by explicitly allowing such
approximation-induced autocorrelation, whereas we assume independent er-
rors across values of p. An alternative approach would be to use additional
knots in the spline model, however, this approach would complicate the char-
acterization of k-step compliance. Despite the presence of approximation-
induced autocorrelation in our residuals, we note that the best-fitting ap-
proximation is always concave increasing, suggesting that our primary ques-
tion of interest would not be misguided by the spline approximation.
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